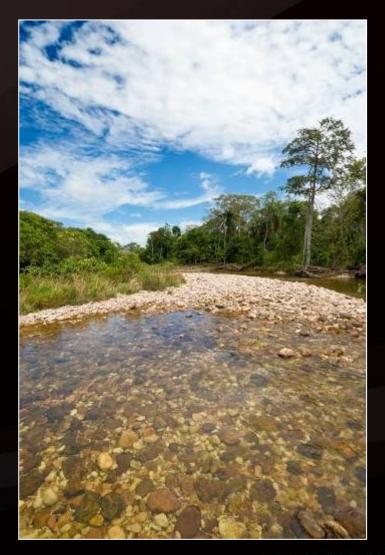


An Integrated Asset Management Approach to Unconventional Oil Natural Assets (Venezuela Case Study)


José Luís Ortiz Volcán

Landmark Drilling and Evaluation Division

The material provided in the following presentation contains data and information from public sources which are for informational and educational purposes only. Halliburton is not providing or furnishing a professional opinion or judgment. Halliburton exercises no authority over such data and contents and does not guarantee the accuracy, timeliness or completeness of such information and content and makes no warranty, express or implied, regarding its use.

Agenda

- Life-Cycle Perspective
- Economics and Deliverability Challenges
- Existing Complexities and Risks
- Green Asset Operations and Products
- Supply Chain
- Closing Remarks

Life Cycle Perspective Reservoir Characteristics - Oil Properties

1.3 Trillion Bbl OOIP 216 Billion Bbl Reserves

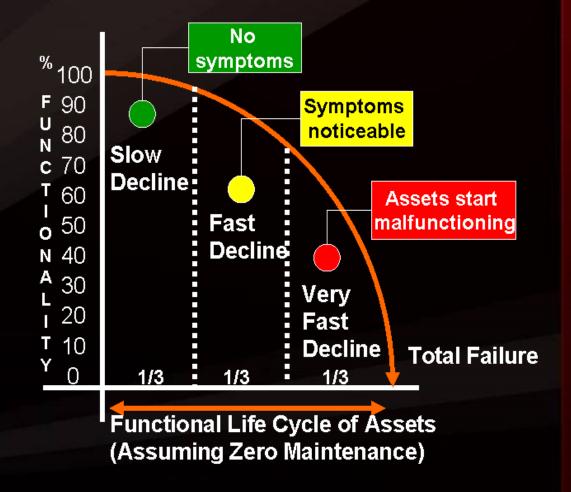
(undergoing reserves certification)

Orinoco Oil Belt (OOB)

Depth, ft	1,000 – 3,500
Sand Thick., ft	50 – 300
Porosity, %	30
Permeability, Darcy	5 – 20
Temperature, °F	110 – 130
API Gravity	7.8 – 9.8
Viscosity, cst. a 122 °F	2,000 – 10,000
Vanadium, ppm	300 – 500
Nickel, ppm	120
Sulfur, %w	3.5 – 4.0

Sources: 1) http://www.camarapetrolera.org/eventos/presentaciones_crudos_pesados_2008/12_02_08/luis_vierma.zip, 2) 7th UNITAR Conference, Beijing, October 1998 – I. Layrisse and J. Chacín: The Impact of Technology in the Development of the Orinoco Belt. Results and Future Trends

Life Cycle Perspective Unique Business Model: The Planned Energy Complex


55,314 Km² 4 Areas - 28 Blocks Companies from 21 Countries

34,000 Jobs by 2012

Raw Oil + Water Molecular Transformation Synthetic Crude	Energy	 Refining products Synthetic gas Super-clean fuels Green Chemicals Power Plants
	Industrial Infrastructure Goods and Services	 Housing and Roads Agriculture and Food Construction and Engineering Schools and Universities Hospitals Sports and Culture

Life Cycle Perspective Reliability – Key to Future OOB Developments

Design for high reliability performance

Life Cycle Perspective 25 Years of Upstream Technology Innovations

Year	Technologies	Barrels/Day/Well
1980-1985	Vertical Wells	100-400
	Pumping Optimization	
1990-2000	1,500-ft Horizontal Well	
	ESP, PCP and Multiphase	
	Pumps, Multilateral Wells	600-2,500
2005	Well Construction and	
	Fluids Optimization	2,000-3,500

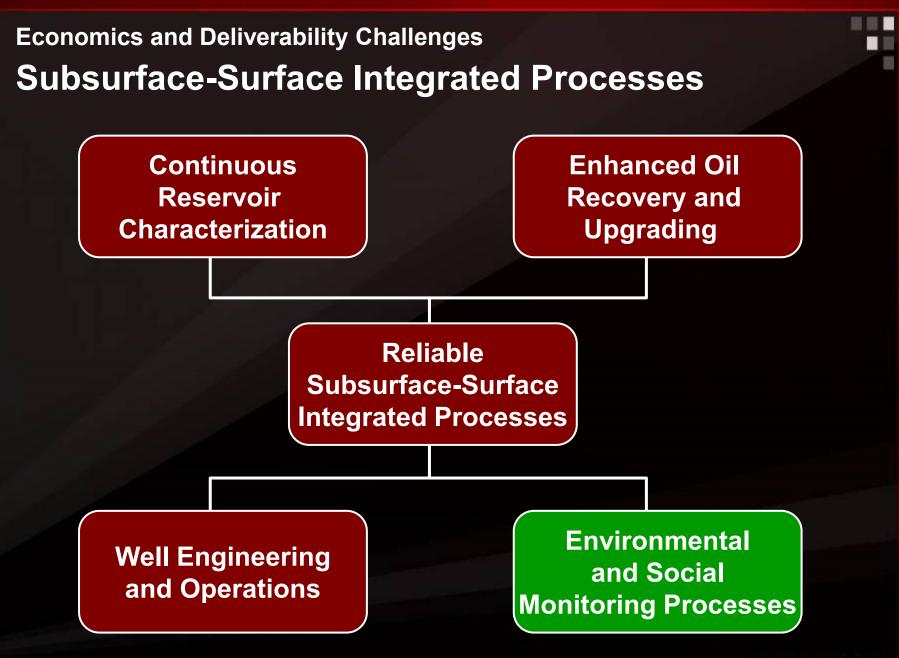
Up to 12% Recovery

Source: http://www.camarapetrolera.org/eventos/presentaciones_crudos_pesados_2008/13_02_08/hercilio_rivas_intevep.pdf

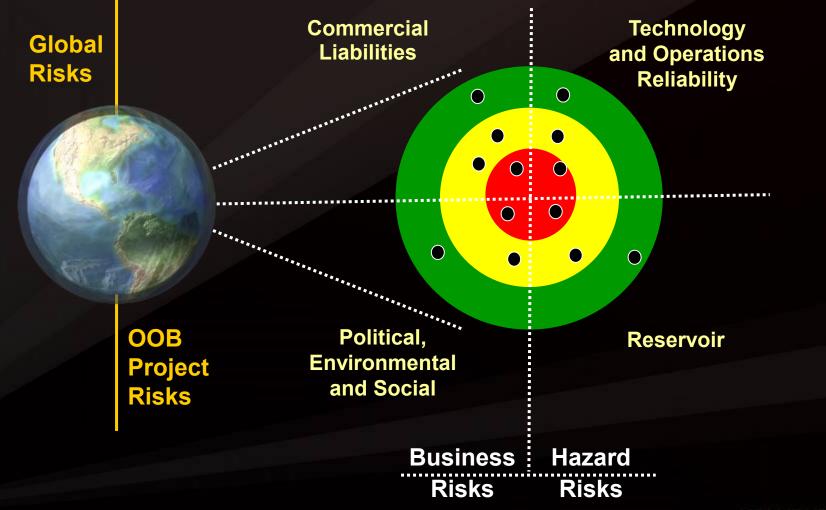
Life Cycle Perspective Technology Life Cycle – Many Options

Technology	Life Cycle Phase	Impact	Local Experience
Steam flooding	Mature	RF 30% to 50%	Yes
Steam Assisted Gravity Drainage	Commercial	RF 60% or more	Yes
In-Situ Combustion	Commercial	RF 55% to 65%	Yes
Solvent Assisted Gravity Drainage	Pilot	RF 60% or more	Yes
Downhole Heating with Electricity	Commercial	Productivity	Yes
Multilaterals	Commercial	Productivity	Yes
Pressure Pulsing Technology	Commercial	Productivity	No
Cold Heavy Oil Production with Sand	Commercial	RF up to 20%	No

Economics and Deliverability Challenges
Upstream, Midstream and Downstream


- Achieve recovery factors 20% or above and higher well productivity
- Sustain oil production for 30+ years and optimize life-cycle cost (CAPEX + OPEX)
- Lower operating costs without compromising safety and reliability
- Develop highly efficient upgrading and refinery processes

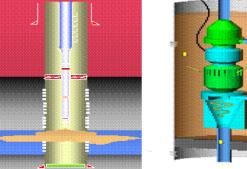
Economics and Deliverability Challenges
Upstream, Midstream and Downstream

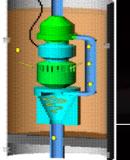

 Creation of a cycle where carbon dioxide is sequestered for oil enhanced recovery

• Use gasified coal instead of natural gas

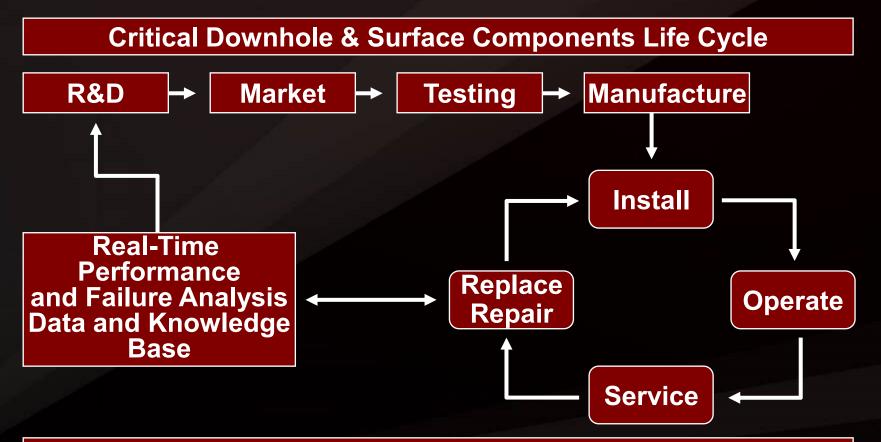
Development of key competencies

Existing Complexities and Risks Risk Management Systems Needed




Green Asset Operations and Products Near Zero Environmental Impact

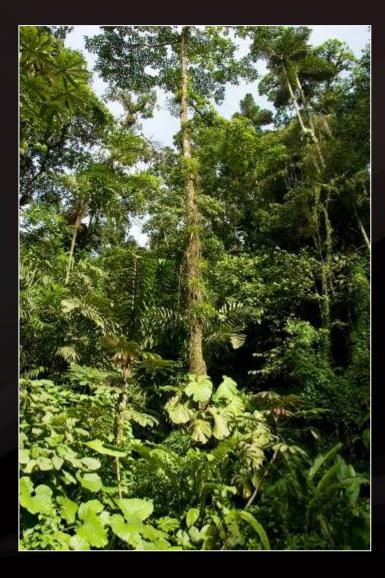
Minimizing Impact on Land Use


Biological Bacterial Phenol and Sulfur Removal

Downhole Oil Water Separation and Simultaneous Injection

Supply Chain Increasing Reliability of Critical Components

Optimum Production with Lowest Total Cost of Ownership


Source: Adapted from Ortiz-Volcan JL & Saveth Ken - SPE ATW A Field Life Cycle Perspective to Artificial Lift Asset Systems - Cartagena, Colombia, February 2007

Closing Remarks

Lessons Learned in the 1990s – Valid Today

- Long-term planning should balance shortterm social and environmental realities
- Regional capabilities key to getting optimum conditions for OOB projects
- Upstream projects should be tied to the country's development strategy
- Handling of cultural differences improves business process

Closing Remarks Next 10 Years – Overcoming Mental Inertia

Shall Orinoco Oil Belt require a reliable system of physical and human assets supported by carbon-free processing technologies?

"Treat the earth well. It was not given to you by your parents. It was loaned to you by your children." Kenyan Proverb